For those working in singularity theory or other areas of complex geometry, this volume will open the door to the study of Frobenius manifolds. In the first part Hertling explains the theory of manifolds with a multiplication on the tangent bundle. He then presents a simplified explanation of the role of Frobenius manifolds in singularity theory along with all the necessary tools and several applications. Readers will benefit from this careful and sound study of the fundamental structures and results in this exciting branch of mathematics.
For those working in singularity theory or other areas of complex geometry, this volume will open the door to the study of Frobenius manifolds. In the...
Quantum cohomology, the theory of Frobenius manifolds and the relations to integrable systems are flourishing areas since the early 90's. An activity was organized at the Max-Planck-Institute for Mathematics in Bonn, with the purpose of bringing together the main experts in these areas. This volume originates from this activity and presents the state of the art in the subject.
Quantum cohomology, the theory of Frobenius manifolds and the relations to integrable systems are flourishing areas since the early 90's. An activ...
The purpose of this monograph is two-fold: it introduces a conceptual language for the geometrical objects underlying Painleve equations, and it offers new results on a particular Painleve III equation of type PIII (D6), called PIII (0, 0, 4, -4), describing its relation to isomonodromic families of vector bundles on P1 with meromorphic connections. This equation is equivalent to the radial sine (or sinh) Gordon equation and, as such, it appears widely in geometry and physics. It is used here as a very concrete and classical illustration of the modern theory of vector bundles with...
The purpose of this monograph is two-fold: it introduces a conceptual language for the geometrical objects underlying Painleve equations, and it of...