Rapid advances in molecular biology have accelerated the production of a great number of protein-based therapeutic agents. The major cost in producing these proteins appears to be associated with their purification from the complex mixture of the crude extract. A major challenge to the protein biochemist and the biochemical engineer is the development of rapid, efficient, and cost-effective purification systems. This volume presents state-of-the-art reviews of current methods used in the purifica tion of biological macromolecules that are based on molecular interactions. Thus, the major...
Rapid advances in molecular biology have accelerated the production of a great number of protein-based therapeutic agents. The major cost in producing...
A biosensor is a device in which a bioactive layer lies in direct contact with a transducer whose responses to change in the bioactive layer generate eloctronic signals for interpretation. The bioactive layer may consist of membrane-bound enzymes, anti-bodies, or receptors. The potential of this blend of electronics and biotechnology includes the direct assay of clinically important substrates (e.g. blood glucose) and of substances too unstable for storage or whose concentrations fluctuate rapidly. Written by the leading researchers in the field, this book reflects the most current...
A biosensor is a device in which a bioactive layer lies in direct contact with a transducer whose responses to change in the bioactive layer generate ...
The development of radioimmunoassay (RIA) by R.S. Yalow and S.A. Berson in 1959 opens up a new avenue in ultra sensitive analysis of trace substances in complex biological systems. In recognition of the enormous contributions of RIA to basic research in biology and to routine clinical tests in laboratory medicine, R.S. Yalow, the co-developer of RIA, was awarded, in 1977, the Nobel Prize for Medicine and Physiology. The basic principle of RIA is elegantly simple. It is based on a specific, competitive binding reaction between the analyte and the radio-labeled analog of the analyte for the...
The development of radioimmunoassay (RIA) by R.S. Yalow and S.A. Berson in 1959 opens up a new avenue in ultra sensitive analysis of trace substances ...
A biosensor is a device in which a bioactive layer lies in direct contact with a transducer whose responses to change in the bioactive layer generate eloctronic signals for interpretation. The bioactive layer may consist of membrane-bound enzymes, anti-bodies, or receptors. The potential of this blend of electronics and biotechnology includes the direct assay of clinically important substrates (e.g. blood glucose) and of substances too unstable for storage or whose concentrations fluctuate rapidly. Written by the leading researchers in the field, this book reflects the most current ...
A biosensor is a device in which a bioactive layer lies in direct contact with a transducer whose responses to change in the bioactive layer generat...
T. T. Ngo and H. M. Lenhoff Department of Developmental and Cell Biology University of California, Irvine, CA 92717 In 1959, Yalow and Berson used insulin labeled with radioactive iodine to develop a quantitative immunological method for determining the amount of insulin in human plasma. Their method depends upon competition between insulin labeled with radioactive iodine (II 1) and unlabeled insulin from plasma for a fixed and limited number of specific binding sites on the antibody to insulin. The amount of the labeled insulin bound to the antibody is inversely proportional to the amount of...
T. T. Ngo and H. M. Lenhoff Department of Developmental and Cell Biology University of California, Irvine, CA 92717 In 1959, Yalow and Berson used ins...
The basis of all immunoassays is the interaction of antibodies with antigens. The most widely used immunoassay technique is radioimmunoassay (RIA) which was first developed by Yalow and Berson in 1959. The principle of RIA is elegantly simple. It utilizes a competitve binding reaction between analytes and a radio-labeled analog of the analytes (the tracer) for anti-analyte antibodies. In addition to its exquisite specificity, extraordinary sensitivity, good accuracy and precision, ease and rapidity of assay and simplicity of assay development, the applicability of RIA to a wide variety of...
The basis of all immunoassays is the interaction of antibodies with antigens. The most widely used immunoassay technique is radioimmunoassay (RIA) whi...
Rapid advances in molecular biology have accelerated the production of a great number of protein-based therapeutic agents. The major cost in producing these proteins appears to be associated with their purification from the complex mixture of the crude extract. A major challenge to the protein biochemist and the biochemical engineer is the development of rapid, efficient, and cost-effective purification systems. This volume presents state-of-the-art reviews of current methods used in the purifica- tion of biological macromolecules that are based on molecular interactions. Thus, the major...
Rapid advances in molecular biology have accelerated the production of a great number of protein-based therapeutic agents. The major cost in producing...
The development of radioimmunoassay (RIA) by R.S. Yalow and S.A. Berson in 1959 opens up a new avenue in ultra- sensitive analysis of trace substances in complex biological systems. In recognition of the enormous contributions of RIA to basic research in biology and to routine clinical tests in laboratory medicine, R.S. Yalow, the co-developer of RIA, was awarded, in 1977, the Nobel Prize for Medicine and Physiology. The basic principle of RIA is elegantly simple. It is based on a specific, competitive binding reaction between the analyte and the radio-labeled analog of the analyte for the...
The development of radioimmunoassay (RIA) by R.S. Yalow and S.A. Berson in 1959 opens up a new avenue in ultra- sensitive analysis of trace substances...