Timing research in high performance VLSI systems has advanced at a steady pace over the last few years, while tools, especially theoretical mechanisms, lag behind. Much present timing research relies heavily on timing diagrams, which, although intuitive, are inadequate for analysis of large designs with many parameters. Further, timing diagrams offer only approximations, not exact solutions, to many timing problems and provide little insight in the cases where temporal properties of a design interact intricately with the design's logical functionalities. This book presents a methodology for...
Timing research in high performance VLSI systems has advanced at a steady pace over the last few years, while tools, especially theoretical mechanisms...
Timing research in high performance VLSI systems has advanced at a steady pace over the last few years, while tools, especially theoretical mechanisms, lag behind. Much present timing research relies heavily on timing diagrams, which, although intuitive, are inadequate for analysis of large designs with many parameters. Further, timing diagrams offer only approximations, not exact solutions, to many timing problems and provide little insight in the cases where temporal properties of a design interact intricately with the design's logical functionalities. This book presents a methodology for...
Timing research in high performance VLSI systems has advanced at a steady pace over the last few years, while tools, especially theoretical mechanisms...