Widespread use of parallel processing will become a reality only if the process of porting applications to parallel computers can be largely automated. Usually it is straightforward for a user to determine how an application can be mapped onto a parallel machine; however, the actual development of parallel code, if done by hand, is typically difficult and time consuming. Parallelizing compilers, which can gen erate parallel code automatically, are therefore a key technology for parallel processing. In this book, Ping-Sheng Tseng describes a parallelizing compiler for systolic arrays, called...
Widespread use of parallel processing will become a reality only if the process of porting applications to parallel computers can be largely automated...
Widespread use of parallel processing will become a reality only if the process of porting applications to parallel computers can be largely automated. Usually it is straightforward for a user to determine how an application can be mapped onto a parallel machine; however, the actual development of parallel code, if done by hand, is typically difficult and time consuming. Parallelizing compilers, which can gen erate parallel code automatically, are therefore a key technology for parallel processing. In this book, Ping-Sheng Tseng describes a parallelizing compiler for systolic arrays, called...
Widespread use of parallel processing will become a reality only if the process of porting applications to parallel computers can be largely automated...