Foundations of time series for researchers and students
This volume provides a mathematical foundation for time series analysis and prediction theory using the idea of regression and the geometry of Hilbert spaces. It presents an overview of the tools of time series data analysis, a detailed structural analysis of stationary processes through various reparameterizations employing techniques from prediction theory, digital signal processing, and linear algebra. The author emphasizes the foundation and structure of time series and backs up this coverage with theory and...
Foundations of time series for researchers and students
This volume provides a mathematical foundation for time series analysis and predi...
Methods for estimating sparse and large covariance matrices
Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and...
Methods for estimating sparse and large covariance matrices
Covariance and correlation matrices play fundamental roles in every aspec...