Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle. Through workshops, collaborations and publications the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic...
Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabi...
Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle.
Through workshops, collaborations and publications, the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic...
Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabi...
Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing realistic supercomputer simulation models for the complete earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global.
The book is divided into two parts: The present volume - Part I - focuses on microscopic simulation, scaling physics, dynamic rapture and wave propagation, earthquake generation, cycle and seismic pattern....
Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabi...
This second part of a two-volume work contains 22 research articles on various aspects of computational earthquake physics. Coverage includes the promising earthquake forecasting model LURR (Load-Unload Response Ratio); pattern informatics and phase dynamics and their applications; computational algorithms, including continuum damage models and visualization and analysis of geophysical datasets; and assimilation of data.
This second part of a two-volume work contains 22 research articles on various aspects of computational earthquake physics. Coverage includes the p...
Vol. 157, 2000 spanning across disciplines and national boundaries gives cause for optimism. New participation in ACES to extend its existing synergies is welcomed. We wish to thank the scientific participants of The APEC Cooperation for Earthquake Simulation (ACES) and the contributors to this book. We express appreciation to the Australian, Chinese, Japanese and USA governments for supporting the establishment of ACES. We gratefully acknowledge funding support by the Australian government's Department of Industry, Science and Resources, The University of Queensland, Japan's Science and...
Vol. 157, 2000 spanning across disciplines and national boundaries gives cause for optimism. New participation in ACES to extend its existing synergie...