Offers a treatment of different kinds of James-Stein and ridge regression estimators from a frequentist and Bayesian point of view. The book explains and compares estimators analytically as well as numerically and includes Mathematica and Maple programs used in numerical comparison.;College or university bookshops may order five or more copies at a special student rate, available on request.
Offers a treatment of different kinds of James-Stein and ridge regression estimators from a frequentist and Bayesian point of view. The book explains ...
An examination of mathematical formulations of ridge-regression-type estimators points to a curious observation: estimators can be derived by both Bayesian and Frequentist methods. In this updated and expanded edition of his 1990 treatise on the subject, Marvin H. J. Gruber presents, compares, and contrasts the development and properties of ridge-type estimators from these two philosophically different points of view.
The book is organized into five sections. Part I gives a historical survey of the literature and summarizes basic ideas in matrix theory and statistical decision...
An examination of mathematical formulations of ridge-regression-type estimators points to a curious observation: estimators can be derived by both ...
Provides an easy-to-understand guide to statistical linear models and its uses in data analysis
This book defines a broad spectrum of statistical linear models that is useful in the analysis of data. Considerable rewriting was done to make the book more reader friendly than the first edition. Linear Models, Second Edition is written in such a way as to be self-contained for a person with a background in basic statistics, calculus and linear algebra. The text includes numerous applied illustrations, numerical examples, and exercises, now augmented with computer outputs...
Provides an easy-to-understand guide to statistical linear models and its uses in data analysis