The dynamics of mechanical rigid-body mechanisms is a highly developed discipline. The model equations that apply to the tremendous variety of ap- plications of rigid-body systems in industrial practice are based on just a few basic laws of, for example, Newton, Euler, or Lagrange. These basic laws can be written in an extremely compact, symmetrical, and esthetic form, simple enough to be easily learned and kept in mind by students and engi- neers, not only from the area of mechanics but also from other disciplines such as physics, or mathematics, or even control, hydraulics, or electronics....
The dynamics of mechanical rigid-body mechanisms is a highly developed discipline. The model equations that apply to the tremendous variety of ap- pli...
The dynamics of mechanical rigid-body systems is a highly developed disci pline. The model equations that apply to the tremendous variety of appli cations of rigid-body systems in industrial practice are based on just a few basic laws of, for example, Newton, Euler, or Lagrange. These basic laws can be written in an extreme compact, symmetrical, and esthetic form, simple enough to be easily learned and kept in mind by students and engineers not only from the area of mechanics, but also from other disciplines like physics, mathematics, or even control, hydraulics, and electronics. This latter...
The dynamics of mechanical rigid-body systems is a highly developed disci pline. The model equations that apply to the tremendous variety of appli cat...
The dynamics of mechanical rigid-body mechanisms is a highly developed discipline. The model equations that apply to the tremendous variety of ap plications of rigid-body systems in industrial practice are based on just a few basic laws of, for example, Newton, Euler, or Lagrange. These basic laws can be written in an extremely compact, symmetrical, and esthetic form, simple enough to be easily learned and kept in mind by students and engi neers, not only from the area of mechanics but also from other disciplines such as physics, or mathematics, or even control, hydraulics, or electronics....
The dynamics of mechanical rigid-body mechanisms is a highly developed discipline. The model equations that apply to the tremendous variety of ap plic...
Intended for self-study, this second volume presents a systematic approach for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume. The focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, as well as active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of...
Intended for self-study, this second volume presents a systematic approach for deriving model equations of planar and spatial mechanisms. The neces...