A famous theorem in the theory of linear spaces states that every finite linear space has at least as many lines as points. This result of De Bruijn and Erd-s led to the conjecture that every linear space with "few lines" canbe obtained from a projective plane by changing only a small part of itsstructure. Many results related to this conjecture have been proved in the last twenty years. This monograph surveys the subject and presents several new results, such as the recent proof of the Dowling-Wilsonconjecture. Typical methods used in combinatorics are developed so that the text can be...
A famous theorem in the theory of linear spaces states that every finite linear space has at least as many lines as points. This result of De Bruijn a...