In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. It is particularly these interactions with different fields that make L2-invariants very...
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group act...
This work covers topics such as manifolds with positive scalar curvature, pseudo-isotopy spectrum and controlled theory, and reduction of the Novikov and Borel conjectures for aspherical complexes to aspherical manifolds.
This work covers topics such as manifolds with positive scalar curvature, pseudo-isotopy spectrum and controlled theory, and reduction of the Novikov ...