This book deals with the theory of Poincar --Birkhoff normal forms, studying symmetric systems in particular. Attention is focused on general Lie point symmetries, and not just on symmetries acting linearly. Some results on the simultaneous normalization of a vector field describing a dynamical system and vector fields describing its symmetry are presented and a perturbative approach is also used. Attention is given to the problem of convergence of the normalizing transformation in the presence of symmetry, with some other extensions of the theory. The results are discussed for the general...
This book deals with the theory of Poincar --Birkhoff normal forms, studying symmetric systems in particular. Attention is focused on general Lie poin...
has been in the of a Symmetry major ingredient development quantum perturba tion and it is a basic of the of theory, ingredient theory integrable (Hamiltonian and of the the use in context of non Hamiltonian) systems; yet, symmetry gen eral is rather recent. From the of view of nonlinear perturbation theory point the use of has become dynamics, widespread only through equivariant symmetry bifurcation in this attention has been confined to linear even theory; case, mostly symmetries. in recent the and of methods for dif Also, theory practice symmetry years ferential has become and has been to...
has been in the of a Symmetry major ingredient development quantum perturba tion and it is a basic of the of theory, ingredient theory integrable (Ham...