Magnetic fields are responsible for much of the variability and structuring in the universe, but only on the Sun can the basic magnetic field related processes be explored in detail. While several excellent textbooks have established a diagnostic foundation for exploring the physics of unmagnetized stellar atmospheres through spectral analysis, no corresponding treatise for magnetized stellar atmospheres has been available. The present monograph fills this gap. The theoretical foundation for the diagnostics of stellar magnetism is developed from first principles in a comprehensive way, both...
Magnetic fields are responsible for much of the variability and structuring in the universe, but only on the Sun can the basic magnetic field related ...
Magnetic fields are responsible for much of the variability and structuring in the universe, but only on the Sun can the basic magnetic field related processes be explored in detail. While several excellent textbooks have established a diagnostic foundation for exploring the physics of unmagnetized stellar atmospheres through spectral analysis, no corresponding treatise for magnetized stellar atmospheres has been available. The present monograph fills this gap. The theoretical foundation for the diagnostics of stellar magnetism is developed from first principles in a comprehensive way, both...
Magnetic fields are responsible for much of the variability and structuring in the universe, but only on the Sun can the basic magnetic field related ...
Traditionally, solar and stellar physics have been two separate branches of astronomy, which independently of each other have developed their own scientific goals and methods. During the last decade, however, we have witnessed a gradual convergence of these two areas: The solar physicists realize more and more that the sun has to be seen as a special case in a large family of stars of various properties. A more complete understanding of the sun can only be achieved by considering it in this broader context. The stellar physicists on the other hand have become aware that the detailed knowledge...
Traditionally, solar and stellar physics have been two separate branches of astronomy, which independently of each other have developed their own scie...
Traditionally, solar and stellar physics have been two separate branches of astronomy, which independently of each other have developed their own scientific goals and methods. During the last decade, however, we have witnessed a gradual convergence of these two areas: The solar physicists realize more and more that the sun has to be seen as a special case in a large family of stars of various properties. A more complete understanding of the sun can only be achieved by considering it in this broader context. The stellar physicists on the other hand have become aware that the detailed knowledge...
Traditionally, solar and stellar physics have been two separate branches of astronomy, which independently of each other have developed their own scie...
Solar and stellar photospheres constitute the layers most accessible to observations, forming the interface between the interior and the outside of the stars. The solar atmosphere is a rich physics laboratory, in which the whole spectrum of radiative, dynamical, and magnetic processes that tranfer energy into space can be observed. As the fundamental processes take place on very small spatial scales, we need high. resolution observations to explore them. On the other hand the small-scale processes act together to form global properties of the sun, which have their origins in the solar...
Solar and stellar photospheres constitute the layers most accessible to observations, forming the interface between the interior and the outside of th...