The theory of groups, especially of finite groups, is one of the most delightful areas of mathematics. Its proofs often have elegance and crystalline beauty. This textbook is intended for the reader who has been exposed to about three years of serious mathematics.
The notion of a group appears widely in mathematics and even further afield in physics and chemistry, and the fundamental idea should be known to all mathematicians. In this textbook a purely algebraic approach is taken and the choice of material is based upon the notion of conjugacy. The aim is not only to cover basic material,...
The theory of groups, especially of finite groups, is one of the most delightful areas of mathematics. Its proofs often have elegance and crystalline ...
Polycyclic groups are built from cyclic groups in a specific way. They arise in many contexts within group theory itself but also more generally in algebra, for example in the theory of Noetherian rings. They also touch on some aspects of topology, geometry and number theory. The first half of this book develops the standard group theoretic techniques for studying polycyclic groups and the basic properties of these groups. The second half then focuses specifically on the ring theoretic properties of polycyclic groups and their applications, often to purely group theoretic situations.
...
Polycyclic groups are built from cyclic groups in a specific way. They arise in many contexts within group theory itself but also more generally in...
Polycyclic groups are built from cyclic groups in a specific way. They arise in many contexts within group theory itself but also more generally in algebra, for example in the theory of Noetherian rings. They also touch on some aspects of topology, geometry and number theory. The first half of this book develops the standard group theoretic techniques for studying polycyclic groups and the basic properties of these groups. The second half then focuses specifically on the ring theoretic properties of polycyclic groups and their applications, often to purely group theoretic situations.
...
Polycyclic groups are built from cyclic groups in a specific way. They arise in many contexts within group theory itself but also more generally in...