Problem solving is an essential part of every scientific discipline. It has two components: (1) problem identification and formulation, and (2) solution of the formulated problem. One can solve a problem on its own using ad hoc techniques or follow those techniques that have produced efficient solutions to similar problems. This requires the understanding of various algorithm design techniques, how and when to use them to formulate solutions and the context appropriate for each of them. This book advocates the study of algorithm design techniques by presenting most of the useful algorithm...
Problem solving is an essential part of every scientific discipline. It has two components: (1) problem identification and formulation, and (2) soluti...
Problem solving is an essential part of every scientific discipline. It has two components: (1) problem identification and formulation, and (2) the solution to the formulated problem. One can solve a problem on its own using ad hoc techniques or by following techniques that have produced efficient solutions to similar problems. This requires the understanding of various algorithm design techniques, how and when to use them to formulate solutions, and the context appropriate for each of them.Algorithms: Design Techniques and Analysis advocates the study of algorithm design by presenting the...
Problem solving is an essential part of every scientific discipline. It has two components: (1) problem identification and formulation, and (2) the so...