Compactly supported smooth piecewise polynomial functions provide an efficient tool for the approximation of curves and surfaces and other smooth functions of one and several arguments. Since they are locally polynomial, they are easy to evaluate. Since they are smooth, they can be used when smoothness is required, as in the numerical solution of partial differential equations (in the Finite Element method) or the modeling of smooth sur- faces (in Computer Aided Geometric Design). Since they are compactly supported, their linear span has the needed flexibility to approximate at all, and the...
Compactly supported smooth piecewise polynomial functions provide an efficient tool for the approximation of curves and surfaces and other smooth func...
This book is based on the author's experience with calculations involving polynomial splines. It presents those parts of the theory which are especially useful in calculations and stresses the representation of splines as linear combinations of B-splines. After two chapters summarizing polynomial approximation, a rigorous discussion of elementary spline theory is given involving linear, cubic and parabolic splines. The computational handling of piecewise polynomial functions (of one variable) of arbitrary order is the subject of chapters VII and VIII, while chapters IX, X, and XI are devoted...
This book is based on the author's experience with calculations involving polynomial splines. It presents those parts of the theory which are especial...