Over the past two decades, technologies for microsystems fabrication have made considerable progress. This has made possible a large variety of new commercial devices ranging, for example, from integrated pressure and acceleration microsensors to active micromirror arrays for image projection. In the near future, there will be a number of new devices, which will be commercialized in many application areas. The field of microsystems is characterized by its wide diversity, which requires a multidisciplinary approach for design and processes as well as in application areas. Although there...
Over the past two decades, technologies for microsystems fabrication have made considerable progress. This has made possible a large variety of new co...
Over the past two decades, technologies for microsystems fabrication have made considerable progress. This has made possible a large variety of new commercial devices ranging, for example, from integrated pressure and acceleration microsensors to active micromirror arrays for image projection. In the near future, there will be a number of new devices, which will be commercialized in many application areas. The field of microsystems is characterized by its wide diversity, which requires a multidisciplinary approach for design and processes as well as in application areas. Although there...
Over the past two decades, technologies for microsystems fabrication have made considerable progress. This has made possible a large variety of new co...