Addressing physicists and mathematicians alike, this book discusses the finite dimensional representation theory of sl(2), both classical and quantum. Covering representations of U(sl(2)), quantum sl(2), the quantum trace and color representations, and the Turaev-Viro invariant, this work is useful to graduate students and professionals.
The classic subject of representations of U(sl(2)) is equivalent to the physicists' theory of quantum angular momentum. This material is developed in an elementary way using spin-networks and the Temperley-Lieb...
Addressing physicists and mathematicians alike, this book discusses the finite dimensional representation theory of sl(2), both classical a...
Surfaces in 4-Space, written by leading specialists in the field, discusses knotted surfaces in 4-dimensional space and surveys many of the known results in the area. Results on knotted surface diagrams, constructions of knotted surfaces, classically defined invariants, and new invariants defined via quandle homology theory are presented. The last chapter comprises many recent results, and techniques for computation are presented. New tables of quandles with a few elements and the homology groups thereof are included.
This book contains many new...
Surfaces in 4-Space, written by leading specialists in the field, discusses knotted surfaces in 4-dimensional space and surveys ma...
Theoretical tools and insights from discrete mathematics, theoretical computer science, and topology now play essential roles in our understanding of vital biomolecular processes. The related methods are now employed in various fields of mathematical biology as instruments to "zoom in" on processes at a molecular level. This book contains expository chapters on how contemporary models from discrete mathematics - in domains such as algebra, combinatorics, and graph and knot theories - can provide perspective on biomolecular problems ranging from data analysis, molecular and gene arrangements...
Theoretical tools and insights from discrete mathematics, theoretical computer science, and topology now play essential roles in our understanding of ...
Theoretical tools and insights from discrete mathematics, theoretical computer science, and topology now play essential roles in our understanding of vital biomolecular processes. The related methods are now employed in various fields of mathematical biology as instruments to "zoom in" on processes at a molecular level. This book contains expository chapters on how contemporary models from discrete mathematics - in domains such as algebra, combinatorics, and graph and knot theories - can provide perspective on biomolecular problems ranging from data analysis, molecular and gene arrangements...
Theoretical tools and insights from discrete mathematics, theoretical computer science, and topology now play essential roles in our understanding of ...