Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity...
Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding throug...
Close this book for a moment and look around you. You scan the scene by directing your attention, and gaze, at certain specific objects. Despite the background, you discern them. The process is partially intentional and partially preattentive. How all this can be done is described in the fourth volume of Models of Neural Networks devoted to Early Vision and Atten tion that you are holding in your hands. Early vision comprises the first stages of visual information processing. It is as such a scientific challenge whose clarification calls for a penetrating review. Here you see the result. The...
Close this book for a moment and look around you. You scan the scene by directing your attention, and gaze, at certain specific objects. Despite the b...
Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses...
Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brie...
One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proceeds. This is of particular relevance to many practical applications. Here we focus on association, generalization, and representation. We turn to the last topic first. The introductory chapter, "Global Analysis of Recurrent Neural Net works," by Andreas Herz presents an in-depth analysis of how to construct a Lyapunov function for various types of dynamics and neural coding. It includes a review of the recent work with John Hopfield on...
One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proc...
Close this book for a moment and look around you. You scan the scene by directing your attention, and gaze, at certain specific objects. Despite the background, you discern them. The process is partially intentional and partially preattentive. How all this can be done is described in the fourth volume of Models of Neural Networks devoted to Early Vision and Atten tion that you are holding in your hands. Early vision comprises the first stages of visual information processing. It is as such a scientific challenge whose clarification calls for a penetrating review. Here you see the result. The...
Close this book for a moment and look around you. You scan the scene by directing your attention, and gaze, at certain specific objects. Despite the b...
Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity...
Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding throug...
One of the great intellectual challenges for the next few decades is the question of brain organization. What is the basic mechanism for storage of memory? What are the processes that serve as the interphase between the basically chemical processes of the body and the very specific and nonstatistical operations in the brain? Above all, how is concept formation achieved in the human brain? I wonder whether the spirit of the physics that will be involved in these studies will not be akin to that which moved the founders of the "rational foundation of thermodynamics." C. N. Yang 10 The human...
One of the great intellectual challenges for the next few decades is the question of brain organization. What is the basic mechanism for storage of me...
One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proceeds. This is of particular relevance to many practical applications. Here we focus on association, generalization, and representation. We turn to the last topic first. The introductory chapter, "Global Analysis of Recurrent Neural Net works," by Andreas Herz presents an in-depth analysis of how to construct a Lyapunov function for various types of dynamics and neural coding. It includes a review of the recent work with John Hopfield on...
One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proc...