Semidefinite programming (SDP) is one of the most exciting and active research areas in optimization. It has and continues to attract researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity has been prompted by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interior-point algorithms for solving SDP problems, and the depth and elegance of the underlying...
Semidefinite programming (SDP) is one of the most exciting and active research areas in optimization. It has and continues to attract researchers with...
Semidefinite programming (SDP) is one of the most exciting and active research areas in optimization. It has and continues to attract researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity has been prompted by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interior-point algorithms for solving SDP problems, and the depth and elegance of the underlying...
Semidefinite programming (SDP) is one of the most exciting and active research areas in optimization. It has and continues to attract researchers with...
The Many Faces of Degeneracy in Conic Optimization describes various reasons for the loss of strict feasibility, whether due to poor modeling choices or (more interestingly) rich underlying structure, and discusses ways to cope with it and, in many pronounced cases, how to use it as an advantage.
The Many Faces of Degeneracy in Conic Optimization describes various reasons for the loss of strict feasibility, whether due to poor modeling choices ...