This book aims to provide a comprehensive study of the mathematical theory of the vortex method, from its origins in the 1930s, through the developments of the '70s when the use of computers made advanced research possible, to current work on this subject in China and elsewhere. The five chapters treat vortex methods for the Euler and Navier-Stokes equations; mathematical theory for incompressible flows; convergence of vortex methods for the Euler equations; convergence of viscosity splitting; and convergence of the random vortex method. Audience: This volume will be of...
This book aims to provide a comprehensive study of the mathematical theory of the vortex method, from its origins in the 1930s, through the developmen...
"As its name indicates, in the infinite element method the underlying domain is divided into infinitely many pieces. This leads to a system of infinitely many equations for infinitely many unknowns; but these can be reduced by analytical techniques to a finite system when some sort of scaling is present in the original problem. The simplest illustrative example, described carefully at the beginning of the first chapter of the book, is the solution of the Dirichlet problem in the exterior of some polygon. The exterior is subdivided into annular regions by a sequence of geometrically expanding...
"As its name indicates, in the infinite element method the underlying domain is divided into infinitely many pieces. This leads to a system of infinit...