In this book, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebras, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras.In uniform Banach algebras, the spectral norm is equal to the supremum of all continuous multiplicative seminorms whose kernel is a maximal ideal. Two different such seminorms can have the same kernel. Krasner-Tate algebras are characterized among Krasner algebras, affinoid algebras, and...
In this book, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebras, and circular fil...
The book first explains the main properties of analytic functions in order to use them in the study of various problems in p-adic value distribution. Certain properties of p-adic transcendental numbers are examined such as order and type of transcendence, with problems on p-adic exponentials. Lazard's problem for analytic functions inside a disk is explained. P-adic meromorphics are studied. Sets of range uniqueness in a p-adic field are examined. The ultrametric Corona problem is studied. Injective analytic elements are characterized. The p-adic Nevanlinna theory is described and many...
The book first explains the main properties of analytic functions in order to use them in the study of various problems in p-adic value distribution. ...