The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set? It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum...
The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the ...
The Lerch zeta-function is the first monograph on this topic, which is a generalization of the classic Riemann, and Hurwitz zeta-functions. Although analytic results have been presented previously in various monographs on zeta-functions, this is the first book containing both analytic and probability theory of Lerch zeta-functions.
The book starts with classical analytical theory (Euler gamma-functions, functional equation, mean square). The majority of the presented results are new: on approximate functional equations and its applications and on zero distribution...
The Lerch zeta-function is the first monograph on this topic, which is a generalization of the classic Riemann, and Hurwitz zeta-f...
This volume presents a wide range of results in analytic and probabilistic number theory. The full spectrum of limit theorems in the sense of weak convergence of probability measures for the modules of the Riemann zeta-function and other functions is given by Dirichlet series. Applications to the universality and functional independence of such functions are also given. Furthermore, similar results are presented for Dirichlet L-functions and Dirichlet series with multiplicative coefficients. Audience: This is a self-contained book, useful for researchers and graduate students working in...
This volume presents a wide range of results in analytic and probabilistic number theory. The full spectrum of limit theorems in the sense of weak con...
The Lerch zeta-function is the first monograph on this topic, which is a generalization of the classic Riemann, and Hurwitz zeta-functions. Although analytic results have been presented previously in various monographs on zeta-functions, this is the first book containing both analytic and probability theory of Lerch zeta-functions.
The book starts with classical analytical theory (Euler gamma-functions, functional equation, mean square). The majority of the presented results are new: on approximate functional equations and its applications and on zero distribution...
The Lerch zeta-function is the first monograph on this topic, which is a generalization of the classic Riemann, and Hurwitz zeta-f...