This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture.
Each part treats a number of beautiful...
This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Ce...
The functions studied in this monogra9h are a cross between elliptic functions and modular forms in one variable. Specifically, we define a Jacobi form on SL ( ) to be a holomorphic function 2 (JC = upper half-plane) satisfying the t-10 transformation eouations 2Tiimcz- k CT +d a-r +b z ) (1) ( (cT+d) e cp(T, z) cp CT +d ' CT +d (2) rjl(T, z+h+]l) and having a Four-ier expansion of the form 00 e2Tii(nT +rz) (3) cp(T, z) 2: c(n, r) 2:: rE n=O 2 r 4nm Here k and m are natural numbers, called the weight and index of rp, respectively. Note that th e function cp (T, 0) is an ordinary modular...
The functions studied in this monogra9h are a cross between elliptic functions and modular forms in one variable. Specifically, we define a Jacobi for...