This volume includes both asymptotic results on the inevitability of random knotting and linking, and Monte Carlo simulations of knot probability at small lengths. The statistical mechanics and topology of surfaces on the d-dimensional simple cubic lattice are investigated. The energy of knots is studied both analytically and numerically. Vassiliev invariants are investigated and used in random knot simulations. A mutation scheme which leaves the Jones polynomial unaltered is described. Applications include the investigation of RNA secondary structure using Vassiliev invariants, and the...
This volume includes both asymptotic results on the inevitability of random knotting and linking, and Monte Carlo simulations of knot probability at s...
The physical properties of knotted and linked configurations in space have long been of interest to mathematicians. More recently, these properties have become significant to biologists, physicists, and engineers among others. Their depth of importance and breadth of application are now widely appreciated and valuable progress continues to be made each year. This volume presents several contributions from researchers using computers to study problems that would otherwise be intractable. While computations have long been used to analyze problems, formulate conjectures, and search for special...
The physical properties of knotted and linked configurations in space have long been of interest to mathematicians. More recently, these properties ha...