This is first course in mathematical analysis, for students who have some familiarity with calculus, but are not familiar with formal proofs. All but the most straightforward proofs are worked out in detail before being presented formally in this book. Thus most of the ideas are expressed in two different ways; the first encourages and develops the intuition and the second gives a feeling for what constitutes a proof. In this way, intuition and rigor appear as partners rather than competitors. The informal discussions, the examples and the exercises may assume some familiarity with calculus,...
This is first course in mathematical analysis, for students who have some familiarity with calculus, but are not familiar with formal proofs. All but ...