This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear...
This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It ...
Variational methods and their generalizations have been verified to be useful tools in proving the existence of solutions to a variety of boundary value problems for ordinary, impulsive, and partial differential equations as well as for difference equations. In this monograph, we look at how variational methods can be used in all these settings. In our first chapter, we gather the basic notions and fundamental theorems that will be applied in the remainder of this monograph. While many of these items are easily available in the literature, we gather them here both for the convenience of the...
Variational methods and their generalizations have been verified to be useful tools in proving the existence of solutions to a variety of boundary val...