In the last few years, hopes have emerged that simple concepts could perhaps explain the extremely complicated biomolecular processes which are known to a greater and greater accuracy thanks to the extraordinary progress of biology. In parallel, powerful methods in physics, especially nonlinearity and cooperative effects, have been developed. They apply especially to biological phenomena and can explain coherent excitations with remarkable properties. This book provides a pedagogical introduction to the theory of nonlinear excitations and solitons in a biological environment, and also to the...
In the last few years, hopes have emerged that simple concepts could perhaps explain the extremely complicated biomolecular processes which are known ...
Nature provides many examples of coherent nonlinear structures and waves, and these have been observed and studied in various fields ranging from fluids and plasmas through solid-state physics to chemistry and biology. These proceedings reflect the remarkable process in understanding and modeling nonlinear phenomena in various systems that has recently been made.Experimental, numerical, and theoretical activities interact in various studies that are presented according to the following classification: magnetic and optical systems, biosystems and molecular systems, lattice excitations and...
Nature provides many examples of coherent nonlinear structures and waves, and these have been observed and studied in various fields ranging from flui...