An accessible and self-contained introduction to recent advances in fluid dynamics, this book provides an authoritative account of the Euler equations for a perfect incompressible fluid. The book begins with a derivation of the Euler equations from a variational principle. It then recalls the relations on vorticity and pressure and proposes various weak formulations. The book develops the key tools for analysis: the Littlewood-Paley theory, action of Fourier multipliers on L spaces, and partial differential calculus. These techniques are used to prove various recent results concerning vortex...
An accessible and self-contained introduction to recent advances in fluid dynamics, this book provides an authoritative account of the Euler equations...
Aimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology, and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The text is divided into four parts, with the first part providing the physical background of the geophysical models to be analyzed. Part two is devoted to a self contained proof of the existence of weak (or strong) solutions to the imcompressible Navier-Stokes equations. Part three deals with the rapidly rotating Navier-Stokes...
Aimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology, and mechanics, this text provides a deta...
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrodinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the...
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those...