Preliminary Text. Do not use. 15 years ago the function theory and operator theory connected with the Hardy spaces was well understood (zeros; factorization; interpolation; invariant subspaces; Toeplitz and Hankel operators, etc.). None of the techniques that led to all the information about Hardy spaces worked on their close relatives the Bergman spaces. Most mathematicians who worked in the intersection of function theory and operator theory thought that progress on the Bergman spaces was unlikely. Now the situation has completely changed. Today there are rich theories describing the...
Preliminary Text. Do not use. 15 years ago the function theory and operator theory connected with the Hardy spaces was well understood (zeros; factori...
An Introduction to Operator Algebras is a concise text/reference that focuses on the fundamental results in operator algebras. Results discussed include Gelfand's representation of commutative C*-algebras, the GNS construction, the spectral theorem, polar decomposition, von Neumann's double commutant theorem, Kaplansky's density theorem, the (continuous, Borel, and L8) functional calculus for normal operators, and type decomposition for von Neumann algebras. Exercises are provided after each chapter.
An Introduction to Operator Algebras is a concise text/reference that focuses on the fundamental results in operator algebras. Results discussed inclu...
Several natural Lp spaces of analytic functions have been widely studied in the past few decades, including Hardy spaces, Bergman spaces, and Fock spaces. The terms "Hardy spaces" and "Bergman spaces" are by now standard and well established. But the term "Fock spaces" is a different story.
Numerous excellent books now exist on the subject of Hardy spaces. Several books about Bergman spaces, including some of the author's, have also appeared in the past few decades. But there has been no book on the market concerning the Fock spaces. The purpose of this book is to fill that void,...
Several natural Lp spaces of analytic functions have been widely studied in the past few decades, including Hardy spaces, Bergman spaces, and Fock ...
Preliminary Text. Do not use. 15 years ago the function theory and operator theory connected with the Hardy spaces was well understood (zeros; factorization; interpolation; invariant subspaces; Toeplitz and Hankel operators, etc.). None of the techniques that led to all the information about Hardy spaces worked on their close relatives the Bergman spaces. Most mathematicians who worked in the intersection of function theory and operator theory thought that progress on the Bergman spaces was unlikely. Now the situation has completely changed. Today there are rich theories describing the...
Preliminary Text. Do not use. 15 years ago the function theory and operator theory connected with the Hardy spaces was well understood (zeros; factori...
Several natural Lp spaces of analytic functions have been widely studied in the past few decades, including Hardy spaces, Bergman spaces, and Fock spaces. The terms "Hardy spaces" and "Bergman spaces" are by now standard and well established. But the term "Fock spaces" is a different story.
Numerous excellent books now exist on the subject of Hardy spaces. Several books about Bergman spaces, including some of the author's, have also appeared in the past few decades. But there has been no book on the market concerning the Fock spaces. The purpose of this book is to fill that void,...
Several natural Lp spaces of analytic functions have been widely studied in the past few decades, including Hardy spaces, Bergman spaces, and Fock ...