Thoroughly revised, updated, expanded, and reorganized to serve as a primary text for mathematics courses, Introduction to Set Theory, Third Edition covers the basics: relations, functions, orderings, finite, countable, and uncountable sets, and cardinal and ordinal numbers. It also provides five additional self-contained chapters, consolidates the material on real numbers into a single updated chapter affording flexibility in course design, supplies end-of-section problems, with hints, of varying degrees of difficulty, includes new material on normal forms and Goodstein sequences, and adds...
Thoroughly revised, updated, expanded, and reorganized to serve as a primary text for mathematics courses, Introduction to Set Theory, Third Edition c...
Analysis with Ultrasmall Numbers presents an intuitive treatment of mathematics using ultrasmall numbers. With this modern approach to infinitesimals, proofs become simpler and more focused on the combinatorial heart of arguments, unlike traditional treatments that use epsilon delta methods. Students can fully prove fundamental results, such as the Extreme Value Theorem, from the axioms immediately, without needing to master notions of supremum or compactness.
The book is suitable for a calculus course at the undergraduate or high school level or for...
Analysis with Ultrasmall Numbers presents an intuitive treatment of mathematics using ultrasmall numbers. With this modern approac...