Peter Hilton Friedrich Hirzebruch Reinhold Remmert
Mathematics has a certain mystique, for it is pure and ex- act, yet demands remarkable creativity. This reputation is reinforced by its characteristic abstraction and its own in- dividual language, which often disguise its origins in and connections with the physical world. Publishing mathematics, therefore, requires special effort and talent. Heinz G-tze, who has dedicated his life to scientific pu- blishing, took up this challenge with his typical enthusi- asm. This Festschrift celebrates his invaluable contribu- tions to the mathematical community, many of whose leading members he counts...
Mathematics has a certain mystique, for it is pure and ex- act, yet demands remarkable creativity. This reputation is reinforced by its characteristic...
Zum Anlass des 100. Geburtstages der Deutschen Mathematiker-Vereinigung erscheint diese Festschrift, bestehend aus neunzehn Beitragen, in denen anerkannte Fachwissenschaftler die Entwicklung ihres jeweiligen mathematischen Fachgebietes beschreiben und dabei auch kritische Ruckschau auf die Geschichte der Deutschen Mathematiker-Vereinigung seit ihrer Grundung 1890 halten. Insbesondere der erste Beitrag setzt sich intensiv mit der Historie der Mathematik und der Mathematiker im Dritten Reich auseinander."Mit diesem Band wird ein wichtiger Beitrag zur bisher wenig entwickelten...
Zum Anlass des 100. Geburtstages der Deutschen Mathematiker-Vereinigung erscheint diese Festschrift, bestehend aus neunzehn Beitragen, in denen anerka...
During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms." Iwanted to develop the theory of "Elliptic Genera" and to leam it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word "genus" is meant in the sense of my book "Neue Topologische Methoden in der Algebraischen Geometrie" published in 1956: A genus is a homomorphism of the Thom cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus. The...
During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms." Iwanted to develop the theory ...
Friedrich Hirzebruch (1927 -2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure of his generation. Hirzebruch's first great mathematical achievement was the proof, in 1954, of the generalization of the classical Riemann-Roch theorem to higher dimensional complex manifolds, now known as the Hirzebruch-Riemann-Roch theorem. This used the new techniques of sheaf cohomology and was one of the centerpieces of the explosion of new results in geometry and topology during the 1950s. Further generalization of this led to...
Friedrich Hirzebruch (1927 -2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leadi...
Friedrich Hirzebruch (1927 -2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure of his generation. Hirzebruch's first great mathematical achievement was the proof, in 1954, of the generalization of the classical Riemann-Roch theorem to higher dimensional complex manifolds, now known as the Hirzebruch-Riemann-Roch theorem. This used the new techniques of sheaf cohomology and was one of the centerpieces of the explosion of new results in geometry and topology during the 1950s. Further generalization of...
Friedrich Hirzebruch (1927 -2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, a...
During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms." I wanted to develop the theory of "Elliptic Genera" and to learn it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word "genus" is meant in the sense of my book "Neue Topologische Methoden in der Algebraischen Geometrie" published in 1956: A genus is a homomorphism of the Thorn cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus....
During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms." I wanted to develop the theory...