This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this...
This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic ge...
The main topics discussed at the D. M. V. Seminar were the connectedness theorems of Fulton and Hansen, linear normality and subvarieties of small codimension in projective spaces. They are closely related; thus the connectedness theorem can be used to prove the inequality-part of Hartshorne's conjecture on linear normality, whereas Deligne's generalisation of the connectedness theorem leads to a refinement of Barth's results on the topology of varieties with small codimension in a projective space. The material concerning the connectedness theorem itself (including the highly surprising...
The main topics discussed at the D. M. V. Seminar were the connectedness theorems of Fulton and Hansen, linear normality and subvarieties of small cod...