New statistical tools are changing the ways in which scientists analyze and interpret data and models. Many of these are emerging as a result of the wide availability of inexpensive, high speed computational power. In particular, hierarchical Bayes and Markov Chain Monte Carlo methods for anyalsis provide consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complex, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences. Models have developed rapidly, and there is now a requirement...
New statistical tools are changing the ways in which scientists analyze and interpret data and models. Many of these are emerging as a result of the w...
Sudipto Banerjee Alan E. Gelfand Bradley P. Carlin
Keep Up to Date with the Evolving Landscape of Space and Space-Time Data Analysis and Modeling
Since the publication of the first edition, the statistical landscape has substantially changed for analyzing space and space-time data. More than twice the size of its predecessor, Hierarchical Modeling and Analysis for Spatial Data, Second Edition reflects the major growth in spatial statistics as both a research area and an area of application.
New to the Second Edition
New chapter on spatial point patterns developed primarily...
Keep Up to Date with the Evolving Landscape of Space and Space-Time Data Analysis and Modeling