Linear regression is an important area of statistics, theoretical or applied. There have been a large number of estimation methods proposed and developed for linear regression. Each has its own competitive edge but none is good for all purposes. This manuscript focuses on construction of an adaptive combination of two estimation methods. The purpose of such adaptive methods is to help users make an objective choice and to combine desirable properties of two estimators.
Linear regression is an important area of statistics, theoretical or applied. There have been a large number of estimation methods proposed and develo...
Robust and nonparametric statistical methods have their foundation in fields ranging from agricultural science to astronomy, from biomedical sciences to the public health disciplines, and, more recently, in genomics, bioinformatics, and financial statistics. These disciplines are presently nourished by data mining and high-level computer-based algorithms, but to work actively with robust and nonparametric procedures, practitioners need to understand their background.
Explaining the underpinnings of robust methods and recent theoretical developments, Methodology in Robust...
Robust and nonparametric statistical methods have their foundation in fields ranging from agricultural science to astronomy, from biomedical scienc...
Linear regression is an important area of statistics, theoretical or applied. There have been a large number of estimation methods proposed and developed for linear regression. Each has its own competitive edge but none is good for all purposes. This manuscript focuses on construction of an adaptive combination of two estimation methods. The purpose of such adaptive methods is to help users make an objective choice and to combine desirable properties of two estimators.
Linear regression is an important area of statistics, theoretical or applied. There have been a large number of estimation methods proposed and develo...