Edward Witten once said that Elliptic Cohomology was a piece of 21st Century Mathematics that happened to fall into the 20th Century. He also likened our understanding of it to what we know of the topography of an archipelago; the peaks are beautiful and clearly connected to each other, but the exact connections are buried, as yet invisible. This very active subject has connections to algebraic topology, theoretical physics, number theory and algebraic geometry, and all these connections are represented in the sixteen papers in this volume. A variety of distinct perspectives are offered, with...
Edward Witten once said that Elliptic Cohomology was a piece of 21st Century Mathematics that happened to fall into the 20th Century. He also likened ...
Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic.
Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to...
Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centerin...