Simplicial sets are discrete analogs of topological spaces. They have played a central role in algebraic topology ever since their introduction in the late 1940s, and they also play an important role in other areas such as geometric topology and algebraic geometry. On a formal level, the homotopy theory of simplicial sets is equivalent to the homotopy theory of topological spaces. In view of this equivalence, one can apply discrete, algebraic techniques to perform basic topological constructions. These techniques are particularly appropriate in the theory of localization and completion of...
Simplicial sets are discrete analogs of topological spaces. They have played a central role in algebraic topology ever since their introduction in the...
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are...
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry,...
J. Frank Adams was one of the world's leading topologists. He solved a number of celebrated problems in algebraic topology, a subject in which he initiated many of the most active areas of research. He wrote a large number of papers during the period 1955 1988, and they are characterised by elegant writing and depth of thought. Few of them have been superseded by later work. This selection, in two volumes, brings together all his major research contributions. They are organised by subject matter rather than in strict chronological order. The first contains papers on: the cobar construction,...
J. Frank Adams was one of the world's leading topologists. He solved a number of celebrated problems in algebraic topology, a subject in which he init...
This selection of Adams' work in two volumes brings together all his major research contributions. They are organized by subject matter rather than in strict chronological order. The first volume contains papers on the cobar construction, the Adams spectral sequence, higher order cohomology operations, and the Hopf invariant one problem, applications of K-theory, generalized homology and cohomology theories. The second volume is mainly concerned with Adams' contributions to characteristic classes and calculations in K-theory, modules over the Steenrod algebra and their Ext groups, finite...
This selection of Adams' work in two volumes brings together all his major research contributions. They are organized by subject matter rather than in...
This IMA Volume in Mathematics and its Applications TOWARDS HIGHER CATEGORIES contains expository and research papers based on a highly successful IMA Summer Program on n-Categories: Foundations and Applications. We are grateful to all the participants for making this occasion a very productive and stimulating one. We would like to thank John C. Baez (Department of Mathematics, University of California Riverside) and J. Peter May (Department of Ma- ematics, University of Chicago) for their superb role as summer program organizers and editors of this volume. We take this opportunity to thank...
This IMA Volume in Mathematics and its Applications TOWARDS HIGHER CATEGORIES contains expository and research papers based on a highly successful IMA...
With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May's "A Concise Course in Algebraic Topology" addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others...
With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that trea...
This IMA Volume in Mathematics and its Applications TOWARDS HIGHER CATEGORIES contains expository and research papers based on a highly successful IMA Summer Program on n-Categories: Foundations and Applications. We are grateful to all the participants for making this occasion a very productive and stimulating one. We would like to thank John C. Baez (Department of Mathematics, University of California Riverside) and J. Peter May (Department of Ma- ematics, University of Chicago) for their superb role as summer program organizers and editors of this volume. We take this opportunity to thank...
This IMA Volume in Mathematics and its Applications TOWARDS HIGHER CATEGORIES contains expository and research papers based on a highly successful IMA...