This book has come into being as a result of scientific debates. And these debates have determined its structure. The first chapter is in the form of Socratic dialogues between a mathematician (MATH.), two physicists (pHYS. and EXP.) and a philosopher (PHIL.). However, although one of the authors is a theoretical physicist and the other a mathematician, the reader must not think that their opinions have been divided among the participants of the dialogues. We have tried to convey the inner tension of the topic under discussion and its openness. The attitudes of the participants reflect more...
This book has come into being as a result of scientific debates. And these debates have determined its structure. The first chapter is in the form of ...
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind...
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some ...
In recent decades, quantization has led to interesting applications in various mathematical branches. This volume, comprised of research and survey articles, discusses key topics, including symplectic and algebraic geometry, representation theory, quantum groups, the geometric Langlands program, quantum ergodicity, and non-commutative geometry. A wide range of topics related to quantization are covered, giving a glimpse of the broad subject. The articles are written by distinguished mathematicians in the field and reflect subsequent developments following the Arithmetic and Geometry around...
In recent decades, quantization has led to interesting applications in various mathematical branches. This volume, comprised of research and survey...
"Introduction to Modern Number Theory" surveys from a unified point of view both the modern state and the trends of continuing development of various branches of number theory. Motivated by elementary problems, the central ideas of modern theories are exposed. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions.
This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a...
"Introduction to Modern Number Theory" surveys from a unified point of view both the modern state and the trends of continuing development of vario...