The purpose of this book is to study the relation between the representation ring of a finite group and its integral cohomology by means of characteristic classes. In this way it is possible to extend the known calculations and prove some general results for the integral cohomology ring of a group G of prime power order. Among the groups considered are those of p-rank less than 3, extra-special p-groups, symmetric groups and linear groups over finite fields. An important tool is the Riemann - Roch formula which provides a relation between the characteristic classes of an induced...
The purpose of this book is to study the relation between the representation ring of a finite group and its integral cohomology by means of characteri...
These volumes are based on lecture courses and seminars given at the LMS Durham Symposium on the geometry of low-dimensional manifolds. This area has been one of intense research recently, with major breakthroughs that have illuminated the way a number of different subjects (topology, differential and algebraic geometry and mathematical physics) interact.
These volumes are based on lecture courses and seminars given at the LMS Durham Symposium on the geometry of low-dimensional manifolds. This area has ...
This book provides an introduction to representations of both finite and compact groups. The proofs of the basic results are given for the finite case, but are so phrased as to hold without change for compact topological groups with an invariant integral replacing the sum over the group elements as an averaging tool. Among the topics covered are the relation between representations and characters, the construction of irreducible representations, induced representations and Frobenius reciprocity. Special emphasis is given to exterior powers, with the symmetric group Sn as an illustrative...
This book provides an introduction to representations of both finite and compact groups. The proofs of the basic results are given for the finite case...
Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory is a quotient of oriented cobordism localised away from 2, the latter by the fact that the coefficients coincide with a ring of modular forms. The aim of the book is to construct this cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG). Concluding chapters also...
Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory i...
This volume presents a mix of substantial expository articles and research papers that outline important and topical ideas in the area of contact and symplectic geometry. Many of the results have not been presented before, and the lectures on Floer homology are the first available in book form. Symplectic methods are one of the most active areas of research in mathematics currently, and this volume will attract much attention among professional mathematicians.
This volume presents a mix of substantial expository articles and research papers that outline important and topical ideas in the area of contact and ...