Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurately represent fairly general functions with a small number of adaptively chosen wavelet coefficients, as well as to characterize the smoothness of such functions from the numerical behaviour of these coefficients. The theoretical pillar that underlies such properties involves approximation theory and...
Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, st...
This volume aims to disseminate a number of new ideas that have emerged in the last few years in the field of numerical simulation, all bearing the common denominator of the "multiscale" or "multilevel" paradigm. This covers the presence of multiple relevant "scales" in a physical phenomenon; the detection and representation of "structures," localized in space or in frequency, in the solution of a mathematical model; the decomposition of a function into "details" that can be organized and accessed in decreasing order of importance; and the iterative solution of systems of linear algebraic...
This volume aims to disseminate a number of new ideas that have emerged in the last few years in the field of numerical simulation, all bearing the...