Henny J. G. L. M. Lamers Henry Lamers Joseph P. Cassinelli
This long-awaited graduate textbook, written by two pioneers in the field, provides a comprehensive introduction to the observations, theories, and consequences of stellar winds. The rates of mass loss and the wind velocities are explained from basic physical principles. This textbook also includes chapters clearly explaining the formation and evolution of interstellar bubbles and the effects of mass loss on the evolution of high- and low-mass stars. Each topic is introduced simply to explain the basic processes and then developed to provide a solid foundation for understanding current...
This long-awaited graduate textbook, written by two pioneers in the field, provides a comprehensive introduction to the observations, theories, and co...
Henny J. G. L. M. Lamers Henry Lamers Joseph P. Cassinelli
This long-awaited graduate textbook, written by two pioneers in the field, provides a comprehensive introduction to the observations, theories, and consequences of stellar winds. The rates of mass loss and the wind velocities are explained from basic physical principles. This textbook also includes chapters clearly explaining the formation and evolution of interstellar bubbles and the effects of mass loss on the evolution of high- and low-mass stars. Each topic is introduced simply to explain the basic processes and then developed to provide a solid foundation for understanding current...
This long-awaited graduate textbook, written by two pioneers in the field, provides a comprehensive introduction to the observations, theories, and co...
Planetary nebulae present a fascinating range of shapes and morphologies. They are ideal laboratories for the study of different astrophysical processes: atomic physics, radiative transfer, stellar winds, shocks, wind-wind interaction, and the interaction between stellar winds and the interstellar medium. In addition, planetary nebulae provide information about the late stages of stellar evolution. In the last five years studies of planetary nebulae have progressed very rapidly and new phenomena and insights have been gained. This is partly due to new observations (e.g. from the Hubble...
Planetary nebulae present a fascinating range of shapes and morphologies. They are ideal laboratories for the study of different astrophysical process...
Planetary nebulae present a fascinating range of shapes and morphologies. They are ideal laboratories for the study of different astrophysical processes: atomic physics, radiative transfer, stellar winds, shocks, wind-wind interaction, and the interaction between stellar winds and the interstellar medium. In addition, planetary nebulae provide information about the late stages of stellar evolution. In the last five years studies of planetary nebulae have progressed very rapidly and new phenomena and insights have been gained. This is partly due to new observations (e.g. from the Hubble...
Planetary nebulae present a fascinating range of shapes and morphologies. They are ideal laboratories for the study of different astrophysical process...
On April 28 1986 Cornelis de Jager reached the age of 65 years. On April 30 he officially retired from the University of Utrecht where he has held a Chair for Stellar Astrophysics, later changed into Space Physics, since 1958. Cees de Jager, as he prefers to be called by his friends, has had an active and successful life in science. His interest in astronomy was raised by his father under the clear skies of Celebes (Indonesia). He started a study in physics and astronomy as a student of the late M. Minnaert in Utrecht during World War II. When in 1943 the occupying forces recruited students...
On April 28 1986 Cornelis de Jager reached the age of 65 years. On April 30 he officially retired from the University of Utrecht where he has held a C...