Computational biology is a rapidly expanding field, and the number and variety of computational methods used for DNA and protein sequence analysis is growing every day. These algorithms are extremely valuable to biotechnology companies and to researchers and teachers in universities. This book explains the latest computer technology for analyzing DNA, RNA, and protein sequences. Clear and easy to follow, designed specifically for the non-computer scientist, it will help biologists make better choices on which algorithm to use. New techniques and demonstrations are elucidated, as are...
Computational biology is a rapidly expanding field, and the number and variety of computational methods used for DNA and protein sequence analysis is ...
These proceedings contain papers from the 2009 Workshop on Algorithms in Bioinformatics (WABI), held at the University of Pennsylvania in Philadelphia, Pennsylvania during September 12-13, 2009. WABI 2009 was the ninth annual conference in this series, which focuses on novel algorithms that address imp- tantproblemsingenomics, molecularbiology, andevolution.Theconference- phasizes research that describes computationally e?cient algorithms and data structures that have been implemented and tested in simulations and on real data. WABI is sponsored by the European Association for Theoretical C-...
These proceedings contain papers from the 2009 Workshop on Algorithms in Bioinformatics (WABI), held at the University of Pennsylvania in Philadelphia...
Machine Learning is one of the oldest and most intriguing areas of Ar tificial Intelligence. From the moment that computer visionaries first began to conceive the potential for general-purpose symbolic computa tion, the concept of a machine that could learn by itself has been an ever present goal. Today, although there have been many implemented com puter programs that can be said to learn, we are still far from achieving the lofty visions of self-organizing automata that spring to mind when we think of machine learning. We have established some base camps and scaled some of the foothills of...
Machine Learning is one of the oldest and most intriguing areas of Ar tificial Intelligence. From the moment that computer visionaries first began to ...
Machine Learning is one of the oldest and most intriguing areas of Ar tificial Intelligence. From the moment that computer visionaries first began to conceive the potential for general-purpose symbolic computa tion, the concept of a machine that could learn by itself has been an ever present goal. Today, although there have been many implemented com puter programs that can be said to learn, we are still far from achieving the lofty visions of self-organizing automata that spring to mind when we think of machine learning. We have established some base camps and scaled some of the foothills of...
Machine Learning is one of the oldest and most intriguing areas of Ar tificial Intelligence. From the moment that computer visionaries first began to ...