Biological systems are very special substrates for engineering uniquely the products of evolution, they are easily redesigned by similar approaches. A simple algorithm of iterative cycles of diversification and selection, evolution works at all scales, from single molecules to whole ecosystems. In the little more than a decade since the first reported applications of evolutionary design to enzyme engineering, directed evolution has matured to the point where it now represents the centerpiece of industrial biocatalyst development and is being practiced by thousands of academic and industrial...
Biological systems are very special substrates for engineering uniquely the products of evolution, they are easily redesigned by similar approaches. A...
Directed evolution comprises two distinct steps that are typically applied in an iterative fashion: (1) generating molecular diversity and (2) finding among the ensemble of mutant sequences those proteins that perform the desired fu- tion according to the specified criteria. In many ways, the second step is the most challenging. No matter how cleverly designed or diverse the starting library, without an effective screening strategy the ability to isolate useful clones is severely diminished. The best screens are (1) high throughput, to increase the likelihood that useful clones will be found;...
Directed evolution comprises two distinct steps that are typically applied in an iterative fashion: (1) generating molecular diversity and (2) finding...
Biological systems are very special substrates for engineering uniquely the products of evolution, they are easily redesigned by similar approaches. A simple algorithm of iterative cycles of diversification and selection, evolution works at all scales, from single molecules to whole ecosystems. In the little more than a decade since the first reported applications of evolutionary design to enzyme engineering, directed evolution has matured to the point where it now represents the centerpiece of industrial biocatalyst development and is being practiced by thousands of academic and industrial...
Biological systems are very special substrates for engineering uniquely the products of evolution, they are easily redesigned by similar approaches. A...
Directed evolution comprises two distinct steps that are typically applied in an iterative fashion: (1) generating molecular diversity and (2) finding among the ensemble of mutant sequences those proteins that perform the desired fu- tion according to the specified criteria. In many ways, the second step is the most challenging. No matter how cleverly designed or diverse the starting library, without an effective screening strategy the ability to isolate useful clones is severely diminished. The best screens are (1) high throughput, to increase the likelihood that useful clones will be found;...
Directed evolution comprises two distinct steps that are typically applied in an iterative fashion: (1) generating molecular diversity and (2) finding...