Following their introduction in the early 1980s, o-minimal structures have provided an elegant and surprisingly efficient generalization of semialgebraic and subanalytic geometry. This book gives a self-contained treatment of the theory of o-minimal structures from a geometric and topological viewpoint, assuming only rudimentary algebra and analysis. It starts with an introduction and overview of the subject. Later chapters cover the monotonicity theorem, cell decomposition, and the Euler characteristic in the o-minimal setting and show how these notions are easier to handle than in ordinary...
Following their introduction in the early 1980s, o-minimal structures have provided an elegant and surprisingly efficient generalization of semialgebr...