This is the first of two volumes providing an introduction to modern developments in the representation theory of finite groups and associative algebras, which have transformed the subject into a study of categories of modules. Thus, Dr. Benson's unique perspective in this book incorporates homological algebra and the theory of representations of finite-dimensional algebras. This volume is primarily concerned with the exposition of the necessary background material, and the heart of the discussion is a lengthy introduction to the (Auslander-Reiten) representation theory of finite dimensional...
This is the first of two volumes providing an introduction to modern developments in the representation theory of finite groups and associative algebr...
The heart of the book is a lengthy introduction to the representation theory of finite dimensional algebras, in which the techniques of quivers with relations and almost split sequences are discussed in some detail.
The heart of the book is a lengthy introduction to the representation theory of finite dimensional algebras, in which the techniques of quivers with r...
This is the first of two volumes providing an introduction to modern developments in the representation theory of finite groups and associative algebras, which have transformed the subject into a study of categories of modules. Thus, Dr. Benson's unique perspective in this book incorporates homological algebra and the theory of representations of finite-dimensional algebras. This volume is primarily concerned with the exposition of the necessary background material, and the heart of the discussion is a lengthy introduction to the (Auslander-Reiten) representation theory of finite dimensional...
This is the first of two volumes providing an introduction to modern developments in the representation theory of finite groups and associative algebr...
The aim of this 1983 Yale graduate course was to make some recent results in modular representation theory accessible to an audience ranging from second-year graduate students to established mathematicians.
After a short review of background material, three closely connected topics in modular representation theory of finite groups are treated: representations rings, almost split sequences and the Auslander-Reiten quiver, complexity and cohomology varieties. The last of these has become a major theme in representation theory into the 21st century.
Some of this material was...
The aim of this 1983 Yale graduate course was to make some recent results in modular representation theory accessible to an audience ranging from s...