Drop a pebble in a pond and the results are predictable: circular waves flow from the point of impact. Hit a point on a crystalline solid, however, and the expanding waves are highly nonspherical; the elasticity of a crystal is anisotropic. This book provides a fresh look at the vibrational properties of crystalline solids, elucidated by new imaging techniques. From the megahertz vibrations of ultrasound to the near-terahertz vibrations associated with heat, the underlying elastic anisotropy of the crystal asserts itself. Phonons are elementary vibrations that affect many properties of...
Drop a pebble in a pond and the results are predictable: circular waves flow from the point of impact. Hit a point on a crystalline solid, however, an...
Drop a pebble in a pond and the results are predictable: circular waves flow from the point of impact. Hit a point on a crystalline solid, however, and the expanding waves are highly nonspherical; the elasticity of a crystal is anisotropic. This book provides a fresh look at the vibrational properties of crystalline solids, elucidated by new imaging techniques. From the megahertz vibrations of ultrasound to the near-terahertz vibrations associated with heat, the underlying elastic anisotropy of the crystal asserts itself. Phonons are elementary vibrations that affect many properties of...
Drop a pebble in a pond and the results are predictable: circular waves flow from the point of impact. Hit a point on a crystalline solid, however, an...