Causal inference is perhaps the most important form of reasoning in the sciences. A panoply of disciplines, ranging from epidemiology to biology, from econometrics to physics, make use of probability and statistics in order to infer causal relationships. However, the very foundations of causal inference are up in the air; it is by no means clear which methods of causal inference should be used, nor why they work when they do. This book brings philosophers and scientists together to tackle these important questions. The papers in this volume shed light on the relationship between causality and...
Causal inference is perhaps the most important form of reasoning in the sciences. A panoply of disciplines, ranging from epidemiology to biology, from...
Foundations of Bayesianism is an authoritative collection of papers addressing the key challenges that face the Bayesian interpretation of probability today. Some of these papers seek to clarify the relationships between Bayesian, causal and logical reasoning. Others consider the application of Bayesianism to artificial intelligence, decision theory, statistics and the philosophy of science and mathematics. The volume includes important criticisms of Bayesian reasoning and also gives an insight into some of the points of disagreement amongst advocates of the Bayesian...
Foundations of Bayesianism is an authoritative collection of papers addressing the key challenges that face the Bayesian interpret...