The interplay between analysis on Lie groups and the theory of special functions is well known. This monograph deals with the case of the Heisenberg group and the related expansions in terms of Hermite, special Hermite, and Laguerre functions. The main thrust of the book is to develop a concrete Littlewood-Paley-Stein theory for these expansions and use the theory to prove multiplier theorems. The questions of almost-everywhere and mean convergence of Bochner-Riesz means are also treated. Most of the results in this monograph appear for the first time in book form.
The interplay between analysis on Lie groups and the theory of special functions is well known. This monograph deals with the case of the Heisenber...
S. Thangavelu Sundaram Thangavelu Sundaram Thangavelu
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the...
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, num...
In 1932 Norbert Wiener gave a series of lectures on Fourier analysis at the Univer sity of Cambridge. One result of Wiener's visit to Cambridge was his well-known text The Fourier Integral and Certain of its Applications; another was a paper by G. H. Hardy in the 1933 Journalofthe London Mathematical Society. As Hardy says in the introduction to this paper, This note originates from a remark of Prof. N. Wiener, to the effect that "a f and g = j] cannot both be very small." ... The theo pair of transforms rems which follow give the most precise interpretation possible ofWiener's remark....
In 1932 Norbert Wiener gave a series of lectures on Fourier analysis at the Univer sity of Cambridge. One result of Wiener's visit to Cambridge was hi...
In 1932 Norbert Wiener gave a series of lectures on Fourier analysis at the Univer- sity of Cambridge. One result of Wiener's visit to Cambridge was his well-known text The Fourier Integral and Certain of its Applications; another was a paper by G. H. Hardy in the 1933 Journalofthe London Mathematical Society. As Hardy says in the introduction to this paper, This note originates from a remark of Prof. N. Wiener, to the effect that "a f and g = j] cannot both be very small." ... The theo- pair of transforms rems which follow give the most precise interpretation possible ofWiener's remark....
In 1932 Norbert Wiener gave a series of lectures on Fourier analysis at the Univer- sity of Cambridge. One result of Wiener's visit to Cambridge was h...
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the...
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, num...