Non linearity arises in statistical inference in various ways, with varying degrees of severity, as an obstacle to statistical analysis. More entrenched forms of nonlinearity often require intensive numerical methods to construct estimators, and the use of root search algorithms, or one-step estimators, is a standard method of solution. This book provides a comprehensive study of nonlinear estimating equations and artificial likelihood's for statistical inference. It provides extensive coverage and comparison of hill climbing algorithms, which when started at points of nonconcavity often have...
Non linearity arises in statistical inference in various ways, with varying degrees of severity, as an obstacle to statistical analysis. More entrench...
Over the years, a number of books have been written on the theory of functional equations. However, very little has been published which helps readers to solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. The student who encounters a functional equation on a mathematics contest will need to investigate solutions to the equation by finding all solutions, or by showing that all solutions have a particular property. The emphasis here will be on the development of those tools which are most useful in assigning a family of...
Over the years, a number of books have been written on the theory of functional equations. However, very little has been published which helps read...
Over the years, a number of books have been written on the theory of functional equations. However, very little has been published which helps readers to solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. The student who encounters a functional equation on a mathematics contest will need to investigate solutions to the equation by finding all solutions, or by showing that all solutions have a particular property. The emphasis here will be on the development of those tools which are most useful in assigning a family of...
Over the years, a number of books have been written on the theory of functional equations. However, very little has been published which helps read...
In general terms, the shape of an object, data set, or image can be de fined as the total of all information that is invariant under translations, rotations, and isotropic rescalings. Thus two objects can be said to have the same shape if they are similar in the sense of Euclidean geometry. For example, all equilateral triangles have the same shape, and so do all cubes. In applications, bodies rarely have exactly the same shape within measure ment error. In such cases the variation in shape can often be the subject of statistical analysis. The last decade has seen a considerable growth in...
In general terms, the shape of an object, data set, or image can be de fined as the total of all information that is invariant under translations, rot...
Hilbert space methods are an alternative to the measure-theoretic definitions of random-variables. They are important in the theory of martingales and stochastic integration, as well as in interpolation and density estimation.
Hilbert space methods are an alternative to the measure-theoretic definitions of random-variables. They are important in the theory of martingales and...
This monograph arose out of a desire to develop an approach to statistical infer ence that would be both comprehensive in its treatment of statistical principles and sufficiently powerful to be applicable to a variety of important practical problems. In the latter category, the problems of inference for stochastic processes (which arise com monly in engineering and biological applications) come to mind. Classes of estimating functions seem to be promising in this respect. The monograph examines some of the consequences of extending standard concepts of ancillarity, sufficiency and complete...
This monograph arose out of a desire to develop an approach to statistical infer ence that would be both comprehensive in its treatment of statistical...
In general terms, the shape of an object, data set, or image can be de fined as the total of all information that is invariant under translations, rotations, and isotropic rescalings. Thus two objects can be said to have the same shape if they are similar in the sense of Euclidean geometry. For example, all equilateral triangles have the same shape, and so do all cubes. In applications, bodies rarely have exactly the same shape within measure ment error. In such cases the variation in shape can often be the subject of statistical analysis. The last decade has seen a considerable growth in...
In general terms, the shape of an object, data set, or image can be de fined as the total of all information that is invariant under translations, rot...