Line graphs have the property that their least eigenvalue is greater than, or equal to, -2, a property shared by generalized line graphs and a finite number of so-called exceptional graphs. This book deals with all these families of graphs in the context of their spectral properties. Technical descriptions of these graphs are included in the appendices, while the bibliography provides over 250 references. It will be an important resource for all researchers with an interest in algebraic graph theory.
Line graphs have the property that their least eigenvalue is greater than, or equal to, -2, a property shared by generalized line graphs and a finite ...
Graph theory is an important branch of contemporary combinatorial mathematics. By describing recent results in algebraic graph theory and demonstrating how linear algebra can be used to tackle graph-theoretical problems, the authors provide new techniques for specialists in graph theory. The book explains how the spectral theory of finite graphs can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labeling of graph vertices,...
Graph theory is an important branch of contemporary combinatorial mathematics. By describing recent results in algebraic graph theory and demonstratin...