One of the first things a student of partial differential equations learns is that it is impossible to solve elliptic equations by spatial marching. This new book describes how to do exactly that, providing a powerful tool for solving problems in fluid dynamics, heat transfer, electrostatics, and other fields characterized by discretized partial differential equations. Elliptic Marching Methods and Domain Decomposition demonstrates how to handle numerical instabilities (i.e., limitations on the size of the problem) that appear when one tries to solve these discretized equations with...
One of the first things a student of partial differential equations learns is that it is impossible to solve elliptic equations by spatial marching. T...
Karl Popper is often considered the most influential philosopher of science of the first half (at least) of the 20th century. His assertion that true science theories are characterized by falsifiability has been used to discriminate between science and pseudo-science, and his assertion that science theories cannot be verified but only falsified have been used to categorically and pre-emptively reject claims of realistic Validation of computational physics models. Both of these assertions are challenged, as well as the applicability of the second assertion to modern computational physics...
Karl Popper is often considered the most influential philosopher of science of the first half (at least) of the 20th century. His assertion that true ...